ML Solutions Architect
2025-10-31
Provectus
As an ML Solutions Architect, you'll be the technical bridge between clients and delivery teams. You'll lead pre-sales technical discussions, design ML architectures that solve business problems, and ensure solutions are feasible, scalable, and aligned with client needs. This is a highly client-facing role requiring both deep technical expertise and strong communication skills.\nCore Responsibilities:1. Pre-Sales and Solution Design (50%)- Lead technical discovery sessions with prospective clients- Understand client business problems and translate them into ML solutions- Design end-to-end ML architectures and technical proposals- Create compelling technical presentations and demonstrations- Estimate project scope, timelines, cost, and resource requirements- Support General Managers in winning new business2. Client-Facing Technical Leadership (30%)- Serve as the primary technical point of contact for clients- Manage technical stakeholder expectations- Present technical solutions to both technical and non-technical audiences- Navigate complex organizational dynamics and conflicting priorities- Ensure client satisfaction throughout the project lifecycle- Build long-term trusted advisor relationships3. Internal Collaboration and Handoff (20%)- Collaborate with delivery teams to ensure smooth handoff- Provide technical guidance during project execution- Contribute to the development of reusable solution patterns- Share learnings and best practices with ML practice- Mentor engineers on client communication and solution designRequirements:1. ML Architecture and Design- Solution Design: Ability to architect end-to-end ML systems for diverse business problems- ML Lifecycle: Deep understanding of the full ML lifecycle from data to deployment- System Design: Experience designing scalable, production-grade ML architectures- Trade-off Analysis: Ability to evaluate technical approaches (cost, performance, complexity)- Feasibility Assessment: Quickly assess if ML is an appropriate solution for a problem2. ML Breadth- Multiple ML Domains: Experience across various ML applications (RAG, Computer Vision, Time Series, Recommendation, etc.)- LLM Solutions: Strong experience in architecting LLM-based applications- Classical ML: Foundation in traditional ML algorithms and when to use them- Deep Learning: Understanding of neural network architectures and applications- MLOps: Knowledge of production ML infrastructure and DevOps practices3. Cloud and Infrastructure- AWS Expertise: Advanced knowledge of AWS ML and data services- Multi-Cloud Awareness: Understanding of Azure, GCP alternatives- Serverless Architectures: Experience with Lambda, API Gateway, etc.- Cost Optimization: Ability to design cost-effective solutions- Security and Compliance: Understanding of data security, privacy, and compliance4. Data Architecture- Data Pipelines: Understanding of ETL/ELT patterns and tools- Data Storage: Knowledge of databases, data lakes, and warehouses- Data Quality: Understanding of data validation and monitoring- Real-time vs Batch: Ability to design for different data processing needs\nPlease mention the word **TRUTHFULLY** and tag RMTQyLjEzMi4yMTcuMjMw when applying to show you read the job post completely (#RMTQyLjEzMi4yMTcuMjMw). This is a beta feature to avoid spam applicants. Companies can search these words to find applicants that read this and see they're human.